Home world Using Artificial Intelligence To See the Plasma Edge of Fusion Experiments in...

Using Artificial Intelligence To See the Plasma Edge of Fusion Experiments in New Ways

0
Magnetically Confined Fusion Plasma Simulation
Magnetically Confined Fusion Plasma Simulation

Visualized are two-dimensional pressure fluctuations within a larger three-dimensional magnetically confined fusion plasma simulation. With recent advances in machine-learning techniques, these types of partial observations provide new ways to test reduced turbulence models in both theory and experiment. Credit: Image courtesy of the Plasma Science and Fusion Center

“A successful theory is supposed to predict what you’re going to observe,” explains Mathews, “for example, the temperature, the density, the electric potential, the flows. And it’s the relationships between these variables that fundamentally define a turbulence theory. What our work essentially examines is the dynamic relationship between two of these variables: the turbulent electric field and the electron pressure.”

In the first paper, published in Physical Review E, Mathews employs a novel deep-learning technique that uses artificial neural networks to build representations of the equations governing the reduced fluid theory. With this framework, he demonstrates a way to compute the turbulent electric field from an electron pressure fluctuation in the plasma consistent with the reduced fluid theory. Models commonly used to relate the electric field to pressure break down when applied to turbulent plasmas, but this one is robust even to noisy pressure measurements.

In the second paper, published in Physics of Plasmas, Mathews further investigates this connection, contrasting it against higher-fidelity turbulence simulations. This first-of-its-kind comparison of turbulence across models has previously been difficult — if not impossible — to evaluate precisely. Mathews finds that in plasmas relevant to existing fusion devices, the reduced fluid model’s predicted turbulent fields are consistent with high-fidelity calculations. In this sense, the reduced turbulence theory works. But to fully validate it, “one should check every connection between every variable,” says Mathews.

Mathews’ advisor, Principal Research Scientist Jerry Hughes, notes that plasma turbulence is notoriously difficult to simulate, more so than the familiar turbulence seen in air and water. “This work shows that, under the right set of conditions, physics-informed machine-learning techniques can paint a very full picture of the rapidly fluctuating edge plasma, beginning from a limited set of observations. I’m excited to see how we can apply this to new experiments, in which we essentially never observe every quantity we want.”

These physics-informed deep-learning methods pave new ways in testing old theories and expanding what can be observed from new experiments. David Hatch, a research scientist at the Institute for Fusion Studies at the University of Texas at Austin, believes these applications are the start of a promising new technique.

“Abhi’s work is a major achievement with the potential for broad application,” he says. “For example, given limited diagnostic measurements of a specific plasma quantity, physics-informed machine learning could infer additional plasma quantities in a nearby domain, thereby augmenting the information provided by a given diagnostic. The technique also opens new strategies for model validation.”

Mathews sees exciting research ahead.

“Translating these techniques into fusion experiments for real edge plasmas is one goal we have in sight, and work is currently underway,” he says. “But this is just the beginning.”

References:

“Uncovering turbulent plasma dynamics via deep learning from partial observations” by A. Mathews, M. Francisquez, J. W. Hughes, D. R. Hatch, B. Zhu and B. N. Rogers, 13 August 2021 , Physical Review E.
DOI: 10.1103/PhysRevE.104.025205

“Turbulent field fluctuations in gyrokinetic and fluid plasmas” by A. Mathews, N. Mandell, M. Francisquez, J. W. Hughes and A. Hakim, 1 November 2021, Physics of Plasmas.
DOI: 10.1063/5.0066064

Mathews was supported in this work by the Manson Benedict Fellowship, Natural Sciences and Engineering Research Council of Canada, and U.S. Department of Energy Office of Science under the Fusion Energy Sciences program.?

Previous articleXiaomi Mix 5 Pro to come with a new Surge C2 ISP
Next articleSmile TheGenius Ft. Khadija Kopa – SIKUPI

LEAVE A REPLY

Please enter your comment!
Please enter your name here